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ABSTRACT

The propagation of cosmological ionization fronts during the reionization of the universe is strongly influenced
by small-scale gas inhomogeneities due to structure formation. These inhomogeneities include both collapsed
minihalos, which are generally self-shielding, and lower-density structures, which are not. The minihalos are
dense and sufficiently optically-thick to trap intergalactic ionization fronts, blocking their path and robbing them
of ionizing photons until the minihalo gas is expelled as an evaporative wind. The lower-density structures do not
trap these fronts, but they can slow them down by increasing the overall recombination rate in the intergalactic
medium (IGM). In this paper we study the effects of both typesof inhomogeneities, including nonlinear clustering
effects, and we find that both IGM clumping and collapsed minihalos have significant yet qualitatively different
impacts on reionization. While the number density of minihalos on average increases strongly with time, the
density of minihalosinside H II regions around ionizing sourcesis largely constant. Thus the impact of minihalos
is essentially to decrease the number of ionizing photons available to the IGM at all epochs, which is equivalent
to a reduction in the luminosity of each source. On the other hand, the effect of IGM clumping increases strongly
with time, slowing down reionization and extending it. Thuswhile the impact of minihalos is largely degenerate
with the unknown source efficiency, IGM clumping can help significantly in reconciling the recent observations
of cosmic microwave background polarization with quasar absorption spectra atz∼ 6, which together point to an
early but extended reionization epoch.

Subject headings:hydrodynamics—radiative transfer—galaxies: halos—galaxies: high-redshift—intergalactic
medium—cosmology: theory

1. INTRODUCTION

Recent polarization observations of the cosmic microwave
background by theWilkinson Microwave Anisotropy Probe
(WMAP) imply that reionization was fairly advanced atzre∼ 15
(Kogut et al. 2003). This came as a surprise. The prior detec-
tion of the Gunn-Peterson effect in the spectra of high-redshift
quasars had suggested that reionization was only just ending
at z∼ 6 (White et al 2003; Fan et al. 2004). That was con-
sistent with predictions of the most accurate numerical sim-
ulations in the currentΛCDM paradigm, which had all pre-
dicted this transition atzre ∼< 8− 10 (Ciardi et al. 2000; Gnedin
2000; Razoumov et al. 2002; Ciardi et al. 2003). Despite many
poorly understood details concerning the star formation rate,
the escape fraction of ionizing radiation, and the differences in
numerical treatments of reionization,zre ∼ 15 had seemed un-
likely, and such an extended period of reionization, impossible.

Now the race is on to reconcile the early onset of reionization
suggested by WMAP with the high-redshift Gunn-Peterson ef-
fect, which implies neighboring ionized patches finally grew to
overlap atz∼ 6 (Haiman & Holder 2003; Cen 2003; Wyithe &
Loeb 2003; Ciardi et al. 2003). One suggestion is that the uni-
verse had two reionization epochs but recombined in between
(Cen 2003), yet this ignores the unavoidable spread in redshifts
intrinsic to any such IGM transition (Scannapieco, Schneider,
& Ferrara 2003; Barkana & Loeb 2004). Other suggestions
involve fine-tuning the ionizing photon emissivity for differ-
ent source halo masses, the escape fraction, and the (possibly
metalicity-dependent) Initial Mass Function (IMF), in ways in-
tended to accelerate early ionization, to build up a large enough
τes, but slow down late ionization, to delay the final overlap un-

til z≈ 6 (Wyithe & Loeb 2003; Ciardi et al. 2003). Finally,
several authors have explored the possibility of early partial
reionization due to a decaying particle (Chen & Kamionkowski
2004; Hansen & Haiman 2004), complemented by later full
reionization from astrophysical sources.

The role of small-scale inhomogeneities as sinks of ioniz-
ing photons has mostly been ignored in this context. Never-
theless, over a large range of redshifts, the recombinationtime
trec at the mean IGM density is on the order of the correspond-
ing Hubble time, as illustrated in Figure 1. Thus the absorption
of ionizing photons during reionization happens predominantly
in overdense regions. In hierarchical models like Cold Dark
Matter (CDM), the smallest structures are the first to collapse
gravitationally and dominate the photon consumption both dur-
ing the ionization of a region and afterwards, while balancing
recombinations.

When the first sources turned on, they ionized the neutral,
opaque IGM around them by propagating weak R-type ioniza-
tion fronts (I-fronts). This type of front moves outward super-
sonically with respect to both the neutral gas in front of it and
the ionized gas behind it, so it races ahead of the hydrodynam-
ical response of the IGM. This process was first described by
Shapiro (1986) and Shapiro & Giroux (1987), who solved an-
alytically for the time-varying radius of a spherical I-front sur-
rounding a point source in the expanding IGM and then used
this solution to determine when H II regions would grow to the
point of overlap, thereby completing reionization. In thisstudy
the effect of density inhomogeneity on the motion of the I-front
was described by a mean gas clumping factorC ≡ 〈n2〉/〈n〉2.
A clumpy gas hasC > 1, which causes the ionized gas to re-

1 Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada
2 Kavli Institute for Theoretical Physics, Kohn Hall, UC Santa Barbara, Santa Barbara, CA 93106
3 Department of Astronomy, University of Texas, Austin, TX 78712-1083

1



2

FIG. 1.— Timescales. Hubble timetH (dashed line) and recombination timetrec = (αBnH )−1 at the mean IGM density (solid line) vs. redshiftz (lower panel) and
the ratio of these timescales (top panel).

combine more frequently, increasing the opacity of the H II re-
gion to ionizing photons, which reduces the flux reaching the
I-front and slows it down. This approach has formed the basis
for many more recent semi-analytical treatments of reionization
(e.g. Haiman & Holder 2003; Wyithe & Loeb 2003; Venkate-
san, Tumlinson, & Shull 2003). The idea that reionization pro-
ceeded by the propagation of weak, R-type I-fronts which move
too fast to be affected by the gas dynamical disturbance they
create is also the basis for most of thenumericalsimulations
of reionization carried out to date (e.g. Razoumov et al. 2002;
Ciardi, Ferrara, & White, 2003; Sokasian et al. 2004). In par-
ticular, all numerical studies that add radiative transferto a pre-
computed inhomogeneous cosmological density field (i.e. the
“static” limit) are assuming that there is no significant back re-
action on the gas4.

The assumption of either a mean clumping factor or the static
limit to model the effect of density inhomogeneity on cosmo-
logical I-fronts is not correct even on average, however, unless
the clumps are either optically thin or absorb only a small frac-
tion of the ionizing flux. If a clump is self-shielding, then the
I-front that encounters it will not remain a weak R-type front if
the size of the clump is larger than its Strömgren length (i.e. the
length of a column of gas within which the unshielded arrival
rate of ionizing photons just balances the recombination rate).
In that case the denser gas of the clump must slow the I-front
down enough that the disturbed gas inside the clump catches
up to the I-front and affects its progress. This transforms the I-
front from supersonic, R-type, to subsonic, D-type and “traps”
the I-front inside the clump (Shapiro, Iliev & Raga 2004). If
the clump is gravitationally bound before the arrival of theI-
front, then the I-front will expel the gas from the clump as a
supersonic evaporative wind, as long as the clump cannot bind
photoionized gas withT ≥ 104 K.

The impact of small-scale inhomogeneities on the global I-
fronts that reionized the universe depended upon the relative

importance of unshielded and shielded overdense regions and
their sizes, densities, and abundances. These IGM inhomo-
geneities can be divided into two major types, both of which
have been modeled only crudely in the majority of reioniza-
tion studies. Pre-virialized objects, such as filaments andstill-
collapsing halos, are usually described in terms of the mean
clumping factor described above. Current semi-analyticalmod-
els of reionization either assume a constant clumping factor
(Cen 2003; Haiman & Holder 2003; Tumlinson, Venkatesan
& Shull 2004), a clumping factor derived from linear theory
(Miralda-Escudé, Haehnelt & Rees 2000; Chiu, Fan & Ostriker
2003; Wyithe & Loeb 2003), or ignore clumping altogether (i.e.
assumeC = 1) (Onken & Miralda-Escudé 2004). In practice all
these approaches are over-simplified since the clumping factor
of the IGM gas is dominated by the highly-overdense nonlinear
regions and evolves strongly with redshift.

Modeling of virialized inhomogeneities in previous studies
has been even more approximate. An important dividing line
that separates two distinct populations of virialized halos is that
defined by the virial temperature,Tvir = 104K. In order for stars
to form inside halos, the gas must cool below the virial temper-
ature to become self-gravitating and gravitationally unstable.
Radiative cooling in a purely atomic gas of primordial com-
position is ineffective below 104K, however, so “minihalos”–
halos in the mass range 104M⊙ ∼< M ∼< 108M⊙, with virial tem-
peratures below 104 K – are only able to form stars by forming
H2 molecules, which have the potential to cool the gas below
the virial temperature, by rotational-vibrational line excitations.
The H2 that forms in minihalos, though, is easily dissociated by
UV photons in the Lyman-Werner bands between 11.2 and 13.6
eV, which are produced in abundance by the first stars, long be-
fore the ionizing background from such stars is able to reionize
a significant fraction of the universe (e.g. Haiman, Rees, &
Loeb 1997; Haiman, Abel & Rees 2000; Ciardi et al. 2000).
Thus a generic prediction of current structure formation mod-

4 An exception to this is the code developed in Gnedin (2000) and Ricotti, Gnedin, & Shull (2002), which combines an approximate treatment of radiative transfer
with numerical cosmological gas dynamics.
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els is a large population of minihalos that are unable to cooland
form stars.

In that case, the dominant source of photons for reionization
would have been the more massive halos (i.e.M ∼> 108M⊙) with
Tvir ≥ 104K, in which atomic line cooling is efficient enough to
enable stars to form. From the point of view of such a source
halo, all lines of sight will intersect a minihalo at a distance
less than the mean spacing between sources (Haiman, Abel
& Madau 2001; Shapiro 2001; Shapiro, Iliev, Raga & Martel
2003; Shapiro, Iliev & Raga 2004). Thus, the intergalactic I-
fronts must have found their paths blocked by minihalos in ev-
ery direction, which trapped the fronts until the minihaloswere
evaporated.

In Shapiro, Iliev & Raga (2004) and Iliev, Shapiro & Raga
(2004), we used high-resolution numerical gas dynamical simu-
lations with radiative transfer to study the encounter between an
intergalactic I-front and a minihalo in detail, for a wide range of
conditions expected during reionization. These results yielded
the number of ionizing photons absorbed per minihalo atom
during the time between the arrival of the I-front and the evap-
oration of the minihalo gas,ξ, as a function of the minihalo
mass, source flux level and spectrum, and the redshift of the
encounter. This a fundamental ingredient we will need here to
determine how the presence of minihalos affected global reion-
ization.

This trapping of intergalactic I-fronts by minihalos, com-
bined with the increased recombination rate inside alreadyion-
ized regions due to small-scale clumping outside the minihalos,
may help to explain how reionization could have started early
and ended late. As the global I-fronts advanced into fresh neu-
tral regions, they generally encountered minihalos that formed
at theunfiltered(i.e. not affected by any radiation feedback)
rate of the universe without reionization. The mass fraction
collapsed into minihalos in such regions grew over time, from
8% to 24% to 31% fromz= 15 to 9 to 6, so the average number
of extra photons consumed per atom by photoevaporation must
also have increased with time. This may have enabled miniha-
los to slow the advance of the global I-fronts, with increasing
effect toward late times. Reionization simulations by Ciardi et
al. (2003) for example, which neglected minihalos, found that
if one assumes a high escape fraction of ionizing photons from
the source halos, then the large value of electron scattering op-
tical depth,τes observed by WMAP can be achieved by the first
stars in galaxies with massM ∼> 109M⊙ as sources. However,
in this case, reionization is completed far too early. Minihalos
may have the potential to reconcile this discrepancy, increasing
the duration of the epoch of reionization and allowing for a sim-
ilar high value ofτes, while postponing the redshift of overlap.

In this paper, we consider the impact of both minihalos and
more general IGM clumping in detail, and attempt to quantify
their effects on the duration of the reionization epoch. Driven
by measurements of the cosmic microwave background, the
number abundance of galaxy clusters, and high redshift super-
nova distance estimates (e.g. Spergel et al. 2003; Eke, Cole&
Frenk 1996; Perlmutter et al. 1999) we focus our attention on
theΛCDM cosmological model with parametersh = 0.7, Ω0 =
0.3,ΩΛ = 0.7,Ωb = 0.05,σ8 = 0.87, andnp = 1, whereΩ0, ΩΛ,
andΩb are the total matter, vacuum, and baryonic densities in
units of the critical density (ρcrit), σ2

8 is the variance of linear
fluctuations filtered on the 8h−1Mpc scale, andnp is the index
of the primordial power spectrum. The Eisenstein & Hu (1999)
transfer function is used throughout.

The structure of this work is as follows. In §2 we general-
ize the approach of Shapiro & Giroux (1987) to account for the
effect of minihalo evaporation on the time-varying radius of a
spherical I-front. This will require us to calculate the statisti-
cally biased abundance of minihalos at the location of the front
and incorporate the simulation results for the ionizing photon
consumption rates per minihalo. In §3 we model the global
progress of reionization by summing the results from Section
2 over a statistical distribution of source halos, leading to the
eventual overlap of neighboring H II regions and the comple-
tion of reionization. Our results and conclusions are givenin
§ 4.

2. THE PROPAGATION OF A COSMOLOGICAL IONIZATION
FRONT ABOUT A SINGLE SOURCE

2.1. Cosmological Ionization Fronts in a Clumpy IGM

When a source of ionizing radiation turns on in the expand-
ing, neutral IGM, a weak, R-type I-front propagates outward. If
the IGM were static, this front would decelerate continuously
from the moment of turn on, until, within a time comparable to
the recombination time, it almost reached the size of the Ström-
gren sphere. This Strömgren sphere is just large enough thatthe
total recombination rate of ionized atoms inside it equals the
ionizing photon luminosity of the central source. At this point
the I-front drops to the R-critical speed of twice the sound speed
of the ionized gas, and the front transforms from R-type to D-
type, preceded by a shock. Thereafter the I-front is affected by
the dynamical response of the IGM.

This is not the case, however, in the expanding, average
IGM. Shapiro & Giroux (1987) showed that, while it is for-
mally possible to define an “instantaneous” Strömgren radius
(which grows in time in proportion to the cosmic scale factor),
the actual I-front generally does not reach this radius. Instead,
the I-front remains a weak R-type front as long as the source
continues to shine, and it would not be correct, therefore, to
describe the cosmological H II region as a Strömgren sphere,
a misnomer which unfortunately appears in the literature of
reionization.

We shall follow the approach of Shapiro & Giroux (1987), in
which the H II region is bounded by an I-front whose speed is
determined by the I-front continuity jump condition, whichbal-
ances the outward flux of ionizing photons against the inward
flux of newly created ions. The flux that reaches the front will
be determined by solving the equation of transfer between the
source and the front. We will assume that the IGM is spheri-
cally symmetric outside the source. For simplicity the I-fronts
are taken to be “sharp”, i.e. the width of the transition between
the ionized region inside and the neutral region outside thefront
is small compared to its radius. The actual width is compara-
ble to the absorption mean free path on the neutral side. This
assumption of small mean free path is generally a good ap-
proximation for a “soft” Population II (Pop. II) stellar spec-
trum where most ionizing photons have energies near the ion-
ization threshold of hydrogen, for which the absorption cross-
section due to neutral hydrogen is large. However, I-frontsare
somewhat wider for “hard” spectra like those expected for mas-
sive Population III (Pop. III) stars and the power-law spectra of
QSOs. In these cases a larger fraction of the ionizing photons
are at higher energies, corresponding to lower ionization cross-
sections of neutral hydrogen and helium, and thus our approxi-
mation of sharp I-fronts is less accurate.

Adopting this picture, we consider an ionizing source emit-
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ting Ṅγ ionizing photons per unit time. We define the comoving
radius of the ionized region asrI (t) and its comoving volume as
VI = 4πr3

I /3. We are interested in H II regions that at all times
are much smaller than the scale of the current horizon. The
jump condition across the I-front is given by a balance of the
flux of neutral atoms and photoionizing photons. In the frame
of the front, it can be written as

nH ,1u1 = β−1
i F, (1)

where nH ,1 is the undisturbed hydrogen number density (in
proper coordinates) on the neutral side of the front,u1 =
a(drI/dt) is the I-front peculiar velocity,a = 1/(1+ z) is the
scale factor, andβi is the number of ionizing photons absorbed
to create each ionized H atom that emerges on the ionized side.
In the absence of minihalos,βi = χeff ≡ 1+ pA(He), which cor-
rects for the presence of helium, withp = 0,1 or 2 if He is
mostly neutral, singly ionized or doubly ionized after the pas-
sage through the front, andA(He) = 0.08 is the He abundance
by number with respect to hydrogen. Finally,F is the number
flux of ionizing photons at the current position of the I-front,

F =
S(rI , t)
4πa2r2

I

, (2)

whereS(r,t) is the number of photons emitted by the central
source which pass through a sphere of comoving radiusr per
unit time, given atr = rI as

S(rI ,t) = Ṅγ −
4π

3
r3
I a−3(nH

0)2CαBχeff, (3)

i.e. the number of photons emitted by the source per unit time
minus the number of recombinations in the current H II re-
gion volume. HereC is the volume-averaged clumping factor,
αB = 2.6×10−13 cm3 s−1 is the case B recombination coefficient
for hydrogen at 104K andn0

H is the comoving number density
of hydrogen in present units, 1.87× 10−7(Ωbh2/0.022) cm−3.
In all cases, it is safe to assume that the H II regions are cos-
mologically small, and hence no ionizing photons are lost to
redshifting below the hydrogen ionization threshold.

Combining equations (1) - (3), the evolution of the comoving
volume of the ionized regionVI is given by

dVI

dt
≡ 4πr2

I
drI

dt
≡

1

χeffn0
H

Ṅγ − αBC(1+ z)3n0
H VI . (4)

Defining

VS,i =
4πr3

S,i

3
=

Ṅγ

χeffαBC(n0
H)2

, (5)

we can write equation (4) in dimensionless form
dy
dx

= 1− y(1+ z)3, (6)

wherey ≡ VI/VS,i = (rI/rS,i)3, x ≡ t/t1 and t1 = 1/(αBCn0
H) is

the recombination time of the mean IGM at present (Shapiro &
Giroux 1987).

If we definedτ = dx/a3 = (1+ z)3dx, equation (6) becomes
dy
dτ

= (1+ z)−3 − y, (7)

for which a formal solution is

y(t) = e−τ (t)
∫

τ (t)

τ (ti )
dτ ′

eτ
′

[1 + z(τ ′)]3
, (8)

whereti is the time of source turn-on and for the flat,ΛCDM
model

dτ

dz
= −

(1+ z)2

H0t1[Ω0(1+ z)3 + ΩΛ]1/2
. (9)

Equation (9) has a solution

τ (z) = κ
{

1−
[

Ω0(1+ z)3 + ΩΛ

]1/2
}

, (10)

whereκ ≡ 2
3H0t1Ω0

and the arbitrary constant of integration is
chosen so thatτ (z= 0) = 0. At high redshift, before and during
reionization, we haveΩ0 >> ΩΛ/(1+ z)3 and the solution (10)
becomes

τ (z) = κ[1 − Ω
1/2
0 (1+ z)3/2]. (11)

In this limit equation (8) simplifies to

y(t) = Ω0κ
2e−τ (t)

∫

τ (t)

τ (ti)
dτ ′

eτ
′

(κ − τ ′)2
. (12)

Equation (12) has an exact analytical solution given by

y =
η

(1+ zi)3
eηti/t

[

t
ti

Ei(2,η
ti
t
) − Ei(2,η)

]

, (13)

whereη ≡ 2(1+ zi)3/2/(3H0t1Ω
1/2
0 ) andEi(2,x) ≡

∫ ∞

1
e−xt

t2 dt is
the Exponential integral of second order. The solution in equa-
tion (13) reduces to the one in equation (10a) of Shapiro &
Giroux (1987) for a flat, matter-dominated universe withΩ0 = 1,
t = 2/(3H), and thusη = (1+ zi)3ti/t1.

2.2. The Average Effect of Minihalo Evaporation on
Cosmological Ionization Front Propagation

Having outlined a formalism to describe the expansion of
ionization fronts in aΛCDM cosmology, we next address the
question of absorption by minihalos. As described in §1, when
an intergalactic I-front encounters an individual minihalo, it is
trapped until the minihalo gas is evaporated. For every mini-
halo atom, this process consumesξ ionizing photons. Suppose
we consider the average effect of this process on the global I-
front which moves through a medium comprised of minihalos
embedded in the IGM. The average speed throughout this com-
pound medium will be given by a modified I-front continuity
jump condition which takes account of the additional photon
consumption due to minihalos. In particular, the quantityβi in
eq. (1) should now be replaced by the following

βi ≡ (1− fcoll)χeff + [1 + A(He)] fcoll,MH ξ̄, (14)

where fcoll is the total collapsed baryon fraction (i.e. overall
halo masses) andfcoll,MH is the collapsed fraction of just the
minihalos. Finally, ifξ is the the number of ionizing photons
consumed per minihalo atom in the encounter between the in-
tergalactic I-front and an individual minihalo, then̄ξ is the ap-
propriate average over the distribution of minihalos at thein-
stantaneous location of the global I-front. Inserting eq. (14)
into eq. (1) then yields

nH ,1u1 =
F

(1− fcoll)χeff + [1 + A(He)] fcoll,MH ξ̄
, (15)

wherenH ,1 refers to the total H atom density, including both the
IGM and all halos.

As usual the flux,F, in this I-front jump condition is deter-
mined by integrating the equation of transfer over the ionized
region between the source halo and the I-front. By definition,
the minihalos originally inside this region do not affect this
integration, however, since they will already have been evap-
orated by the passage of the global I-front, thereby returning
their atoms to the IGM inside the H II region. We assume, for
simplicity, that the evaporated minihalo gas shares the mean
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clumping factor the IGM into which it is mixed. In that case,
the flux at the I-front is given by

F =
Ṅγ − αBC(1+ z)3 (n0

H)2χeff (VI −V0)

4πa2r2
I

, (16)

where we have been careful now to start our integration of the
transfer equation from the Lagrangian volume of the source
halo (i.e. a volume which, when multiplied by the mean den-
sity, gives the mass of the source halo).

Combining equations (15) and (16), the evolution of the co-
moving volume of the H II region in the presence of minihalos
is then given by

dVI

dt
=

1
[

(1− fcoll)χeff + [1 + A(He)] fcoll,MH ξ̄
]

×

[

Ṅγ

n0
H

− αBC(1+ z)3n0
Hχeff (VI −V0)

]

, (17)

where initially VI = V0. We note that the solutions in §2.1 in
the absence of minihalos, including the exact analytical solu-
tion for VI (t) and rI (t) in equation (13), will be valid here in
the presence of minihalos as well, ifβi in equation (14) and the
clumping factorC are constants, andt1 is redefined as

t1 ≡

(

αBCn0
H

χeff

βi

)−1

. (18)

In general, bothβi andC will not be constant, but nevertheless
this limit provides a useful check and some insight, as well shall
see below.

We adopt a simple model to account for infall when comput-
ing the flux. The radial coordinate,rI , adopted in our formalism
above is essentially a Lagrangian one, in which we have as-
sumed that the local mean density of the gas around the source
is equal to the cosmic mean IGM density. In reality, all mas-
sive sources are found in overdense regions, due to the gravita-
tional influence on the surrounding gas. We estimate the map
between the Lagrangian and Eulerian comoving radii using a
simple “top-hat” picture, which is a simplified version of the
model described in Barkana (2004).

We compute the cross-correlation between a sphere of La-
grangian radiusrI and spherical perturbation of mass equal to
the source halo massMs = (4π/3)r3

0Ω0ρcrit as

σ2(r0, rI ) ≡
1

2π

∫ ∞

0
k2dkP(k)W(kr0)W(krI ), (19)

where P(k) is the initial matter power spectrum, linearly
extrapolated to the present, andW(x) is the spherical top-
hat window function, defined in Fourier space asW(x) ≡
3
[ sin(x)

x3 − cos(x)x2
]

, where r0 is the Lagrangian radius of the
source itself. Definingσ2(r0) ≡ σ2(r0, r0), the expected value
of the linear overdensity of a sphere of Lagrangian radiusrI

about the source is then given by

δ̄L(rI ) =
1.69D(z)

D(zs)
σ2(r0, rI )
σ2(r0)

+ 1. (20)

Here we usēδL to denote the average density within the sphere,
D(z) is the linear growth factor,zs is the collapse redshift for
the halo, and the “+1” appears since we are defining the over-
density asρ/ρ̄ instead ofρ/ρ̄ − 1. For simplicity, we assume
z= zs, i.e. that the growth of the mass after it collapses due to
secondary infall, is small.

The linear overdensitȳδL can be related to the correspond-
ing nonlinear overdensity,̄δ, by the standard spherical collapse

model (e.g. Peebles 1980). In this case, both quantities canbe
expressed parametrically, in terms of a “collapse parameter” θ
as

δ̄ =
9
2

(θ − sinθ)2

(1− cosθ)3
, (21)

and

δ̄L =
3
5

(

3
4

)2/3

(θ − sinθ)2/3 + 1. (22)

These equations define the relationship between the Eulerian
and Lagrangian comoving radii as

rI ,E = rI δ̄(rI , r0)−1/3, (23)

sinceδ̄ given by equation (21) above is the average overdensity
within an Eulerian sphere of Lagrangian radiusrI .

In the presence of infall, equation (17) becomes
dVI

dt
=

1
[

(1− fcoll)χeff + [1 + A(He)] fcoll,MH ξ̄
]

×

[

Ṅγ

n0
H

− αBC(1+ z)3n0
Hχeff

∫ VI ,E

V0,E

dV′

I ,Eδ(V′

I ,E)2

]

, (24)

where nowδ is not the averageδ within the sphere, but rather
δ at the boundary, andVI ,E ≡VI δ̄

−1 is the Eulerian volume. We
computeδ as follows. The comoving volume satisfies:

∆VI ,Eδ(VI ,E)+VI ,E δ̄(VI ,E) = [VI ,E +∆VI ,E] δ̄(VI ,E +∆VI ,E), (25)

where∆VI ,E is a small change in the size of the radius. Working
to first order in∆VI ,E, this gives

δ = δ̄ +VI ,E
dδ̄

dVI ,E
. (26)

We can therefore rewrite equation (24) using the Lagrangian
volume as

dVI

dt
=

1
[

(1− fcoll)χeff + [1 + A(He)] fcoll,MH ξ̄
]

×

[

Ṅγ

n0
H

− αBC(1+ z)3n0
Hχeff

∫ VI

V0

dV′

I δ(V′

I )−1δ(V′

I )2

]

.(27)

The relevant overdensity that appears in equation (27) is

δclump(VI ) ≡
1

VI −V0

∫ VI

V0

dV′

I δ(V′

I ). (28)

In Figure 2, we show̄δ, δ, andδclump around peaks of mass
108M⊙ and 1011M⊙. Note thatδclump exceeds̄δ over a range
of radii, becauseδclump is an average in Lagrangian coordinates
andδ̄ is an average in Eulerian coordinates. Finally, the flux in
equation (16) is corrected by a similar factor ofδclump, yielding

F =
Ṅγ − αBC(1+ z)3 (n0

H)2χeff (VI −V0)δclump(VI )

4πa2r2
I ,E

. (29)

The average number of ionizing photons absorbed per mini-
halo atom,̄ξ, in the process of evaporating all the minihalos at
the current location of the I-front,rI (t), must now be specified.
Iliev, Shapiro & Raga (2004) have shown that the number of
photons per atom absorbed by a minihalo of massM7 (in units
of 107M⊙), overtaken by an intergalactic I-front at a redshift
of z which is driven by an external source of fluxF0, the flux
in units of that from a source emittingNph = 1056s−1 ionizing
photons per second at a proper distanced of 1 Mpc, i.e.

F0 ≡
Nph,56

d2
Mpc

=
F

8.356×105s−1cm−2
, (30)
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FIG. 2.— Overdensites around a source of a given mass, as labeled, versus Lagrangian distance from the center of the source (in units of the Lagrangian radius
of the halo): the mean̄δ is solid (colored blue in electronic edition), the density at the boundary,δ, is short-dashed (colored red in electronic edition), andδclump is
long-dashed (colored green in electronic edition). (See the electronic edition of the Journal for the color version of this figure.)

during its photoevaporation is given by

ξ(M,z,F0) ≡ 1+ φ1(M)φ2(z)φ3(F0) (31)

whereφ1(M) ≡ A(MB+C log10M7

7 ), φ2(z) ≡
[

G+ H (1+ z)/10
]

and

φ3(F0) ≡ FD+Elog10F0
0 . Here the factorsA-G are dependent on

the spectrum of the ionizing sources:A = (4.4, 4.0, 2.4),B
=(0.334, 0.364, 0.338),C = (0.023, 0.033, 0.032),D =(0.199,
0.240, 0.219),E = (-0.042,-0.021,-0.036),G=(0.,0.,0.1),H=(1,
1, 0.9), for the cases in which the ionizing spectrum is takento
be a 5×104K blackbody representing Pop. II stars , a QSO-like
power-law spectrum with slope of−1.8, or a 105K blackbody
representing Pop. III stars, respectively.

In order to use this result in equation (27), the quantity
ξ(M,z,F0) must first be averaged over the mass function of
minihalos atrI (t) on the undisturbed side of the I-front as the
H II region evolves with time. Sinceξ(M,z,F0) depends on
F0(t), which also depends onrI (t) according to equation (29),
equations (27) and (29) are coupled and must be solved simulta-
neously. We shall consider three analytical approximations for
the minihalo mass function when averagingξ(M,z,F0) to ob-
tain ξ̄. The first two approaches, described in § 2.2.1, are based
on the well-known Press-Schechter (PS) approximation for the
mass function averaged over all space at a given redshift (Press
& Schechter 1974). We shall refer to these, which depend upon
zandF0, but not uponrI (t) or the source halo properties, as “un-
biased minihalo” averages. The third approximation, described
in § 2.2.2, is based upon an extension of the PS approach which
takes account of the spatial correlation between the minihalos
and the central source halos, as described by Scannapieco &
Barkana (2002). In this last approximation, which we refer to
as the “biased minihalo” average,ξ̄ not only depends uponz
andF0, but also onrI (t) and the source halo mass.

2.2.1. The Average Photon Consumption Rate for Unbiased
Minihalos.

We begin by defining the average photon consumption rate
per minihalo atom

ξ̄nb,1(z,F0) ≡

∫ Mmax

Mmin
dM dn(M,z)

dM M ξ(M,z,F0)
∫ Mmax

Mmin
dM dn(M,z)

dM M
, (32)

where dn(M,z)
dM is the PS mass function of halos, if we assume

that the minihalos at a given redshiftz just formed at that red-
shift. If, on the other hand, we assume that minihalos atzhad a
distribution of formation redshiftszf , with zf ≥ z, then

ξ̄nb,2(z,F0) ≡

∫ Mmax

Mmin
dM

∫ ∞

z dzf
dn(M,zf )
dMdzf

M ξ(M,zf ,F0)
∫ Mmax

Mmin
dM

∫ ∞

z dzf
dn(M,zf )
dMdzf

M
. (33)

In both these equations, the limitMmin is the minimum mini-
halo mass (which we assume here to be the Jeans mass at that
epoch), whileMmax = M(Tvir = 104K) is the halo mass at that
epoch for whichTvir = 104 K. In equation (33) we have ap-
proximately accounted for the distribution of minihalo forma-
tion times, by taking the derivative of the mass function, which
glosses over the fact that the change in this function at a given
massM includes both a positive contribution from halos whose
masses have increased toM from lower values, as well as a
negative contribution from halos whose masses have increased
from M to higher values. The error introduced by this approx-
imation is small, however (eg. Kitayama & Suto 1996), and is
justified given the other uncertainties involved.

2.2.2. The Average Photon Consumption Rate for Biased
Minihalos.

To calculate the biased distribution of minihalos about a
given source, we employ an analytical formalism that tracks
the correlated formation of objects. Our approach, described
in detail in Scannapieco & Barkana (2002), extends the stan-
dard PS method using a simple approximation to construct the
bivariate mass function of two perturbations of arbitrary mass
and collapse redshift, initially separated by a fixed comoving
distance (see also Porciani et al. 1998). From this functionwe
can construct the number density of minihalos of massM that
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form at an initial redshiftz at a comoving distancer from the
source halo of massMs and formation redshiftzs:

dn
dM

(M,z, r|Ms,zs) =
d2n

dMdMs
(M,z,Ms,zs, r)
dn

dMs
(Ms,zs)

, (34)

where dn
dMs

(Ms,zs) is the usual PS mass function and
d2n

dMdMs
(M,z,Ms,zs, r) is the bivariate mass function that gives

the product of the differential number densities at two points
separated by an initial comoving distancer, at any two masses
and redshifts. Note that this expression interpolates smoothly
between all standard analytical limits: reducing, for example,
to the standard halo bias expression described by Mo & White
(1996) in the limit of equal mass halos at the same redshift,
and reproducing the Lacey & Cole (1993) progenitor distribu-
tion in the limit of different-mass halos at the same position
at different redshifts. Note also that in adopting this definition
we are effectively working in Lagrangian space, such thatr is
the initial comoving distance between the perturbations. As a
shorthand we definednmh,s

dM (z, r) ≡ dn
dM (M,z, r|Ms,zs). With this

definition the biased values of the average photon consumption
per minihalo atom corresponding to the two unbiased cases in
equations (32) and (33), respectively, are

ξ̄b,1(z,F0, rI ,Ms) =

∫ Mmax

Mmin
dM dnmh,s

dM (z, rI )M ξ(M,z,F0)
∫ Mmax

Mmin
dM dnmh,s

dM (z, rI )M
(35)

and

ξ̄b,2(z,F0, rI ,Ms) =

∫ Mmax

Mmin
dM

∫ ∞

z dzf
dnmh,s

dMdzf
(zf , rI )M ξ(M,zf ,F0)

∫ Mmax

Mmin
dM

∫ ∞

z dzf
dnmh,s

dMdzf
(zf , rI )M ,

(36)
with rI the Lagrangian radius of the I-front.

We can anticipate how important this bias effect is likely to
be in determining the average minihalo consumption rate by
considering its impact on the minihalo collapsed fraction in the
vicinity of a given source halo. In Figure 3, we plot the av-
erage (unbiased) minihalo collapsed fraction versus the biased
value, which varies with distance from the source halo, for two
halo masses 108M⊙ and 1011M⊙, at redshiftsz= 7 andz= 15.
These halo masses and redshifts illustrate the range of behavior
expected during reionization. In terms of the Gaussian-random-
noise initial conditions for ourΛCDM cosmological model,
108M⊙ halos correspond to fluctuations that are 3.2σ (1.6σ) at
z= 15 (7), respectively while 1011M⊙ halos are 6.4σ (3.2σ) at
these same redshifts.

The distance between sources and minihalos is measured in
terms of the comoving Lagrangian (i.e. unperturbed) radiusof
a given mass shell surrounding the central source, in units of r0,
the Lagrangian radius of the source. According to this figure,
the bias can be significant for minihalos located in the range
1∼< r/r0 ∼< 10. For typical source halos, in fact, the biased col-
lapsed fraction in the neighborhood of the source hardly de-
clines with increasing redshift, in contrast with the unbiased
collapsed fraction which declines by a factor of more than 3
betweenz= 7 andz= 15.

2.3. The Ionizing Photon Luminosity of the Central Source

The total ionizing photon output of a source,Nγ , and its time
evolution depend on the mass of the host haloMs, photon pro-
duction per stellar baryonNi , star-formation efficiencyf∗ and
ionizing photon escape fractionfesc. We then define the total

ionizing photon output per source atom that escapes the source
halo as:

fγ = f∗ fescNi , (37)

thus the source emits a total ofNγ = fγMΩb/(µmp) during its
lifetime, whereµmp is the mean mass per atom.

The star-formation efficiencyf∗ and ionizing photon escape
fraction fesc are highly uncertain in general, and even more so
for the high-redshift galaxies responsible for reionization. Their
estimated values vary by several orders of magnitude between
different observational and theoretical estimates (Leitherer et
al. 1995; Ricotti & Shull 2000; Heckman et al. 2001; Stei-
del et al. 2001; Tan & McKee 2001). For simplicity, and
since the principle aim of this investigation is to show the ef-
fect of small-scale structure rather than model the sourcesin
detail, we assume that each source produces a fixed number
fγ of ionizing photons which escape from the source galaxy
per atom in the source during the source’s lifetime. The ion-
izing photon production per atom for Pop. II low-metalicity
stars with a Salpeter IMF isNi = 3000− 10000 (Leitherer et
al. 1999). Zero-metalicity, massive Pop. III stars, on the other
hand, are estimated to produce values ofNi that rise sharply
with mass from 25,000 to 80,000 as stellar mass increases from
10M⊙ to 50M⊙, then gradually reach a peak of 90,000 at 120
M⊙, and finally decline slowly to 80,000 by 500M⊙ (Schaerer
2002; Tumlinson, Venkatesan & Shull 2004). While individ-
ual Pop. III stars have higher values offγ than Pop. II stars of
the same mass, a non-trivial part of the increase from Pop. IIto
Pop. III quoted above reflects the fact that the assumed Pop. II
IMF has many low-mass stars, which are inefficient ionizing
sources, while the Pop. III IMF is often hypothesized to con-
tain only massive stars.

Assuming, conservatively, thatNi ≥ 4000 for Pop. II stars
and Ni ≥ 25,000 for Pop. III stars, and taking moderate
fiducial values for the photon escape fraction and star for-
mation efficiency of fesc = 0.1 and f∗ = 0.1, yields fγ ≥
(40,250)(fesc/0.1)( f∗/0.1) for (Pop. II, Pop. III), respectively.
We shall further assume that the time-dependence of this ioniz-
ing photon output is characteristic of a starburst with a photon
luminosity

Ṅγ = fγ
α− 1
α

MΩb

µmpts
×

{

1 t ≤ ts
(

t
ts

)−α

t > ts,
(38)

whereα = 4.5, i.e. we assume that the source is steady for a
time ts, after which the photon flux decreases as power of time
(Haiman & Holder 2003). Herets is the characteristic time for
a source to fade, essentially the typical source lifetime. For in-
dividual massive starsts ≈ 3 Myr, but starbursts could in prin-
ciple last significantly longer, thus we consider both the cases
ts = 3 Myr andts = 100 Myr. We assume that the He correc-
tion χeff is 1.08 for the softer Pop. II spectrum and 1.16 for the
harder Pop. III and QSO spectra.

2.4. Results for Individual H II Regions

We present the results of our numerical solution of the spher-
ical I-front evolution equations from §2.2 for two illustrative
cases. Sample results for two source halos, a 108M⊙ halo that
turns on atz = 15 and a 1011M⊙ halo that turns on atz = 7,
both with fγ = 250, ts = 3 Myr, and Pop. II spectra, are given
in Figures 4-6. In both cases we display results for a varietyof
clumping factors (C = 0,1,10) and successive approximations
of no minihalos, unbiased minihalos [as given by eq. (32)], and
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FIG. 3.— Biased collapsed fraction of baryons in minihalos,fcoll,MH , as a function of the Lagrangian distance from the source halo(in units of the source halo
Lagrangian radius) for sources of masses 108M⊙ and 1011M⊙ and redshiftsz= 15 andz= 7, as indicated (solid). For reference we also show the unbiased collapsed
fraction of baryons in minihalos at the corresponding redshifts (dashed).(See the electronic edition of the Journal for the color version of this figure.)

FIG. 4.—Bottom:The evolution of the Lagrangian volume of the H II region about a single source of (left) mass 108M⊙ that turns on atzi = 15, or (right) mass
1011M⊙ that turns on atz = 7. Both sources have Pop. II stellar spectra and lifetimes of ts = 3 Myr, during which they produce a total offγ = 250 photons/atom.
Shown are the cases of no minihalos (solid), unbiased minihalos (dotted), and biased minihalos (dashed) for IGM clumping factors (top to bottom in each case)
C = 0 (i.e. no recombinations in IGM gas), 1 (mean IGM), and 10 (clumped IGM).Vmax is the maximum ionized volume reached during the lifetime ofthe source in
theC = 0 case with no minihalos, as defined in the text.Top: Ratios of the ionized volumes with unbiased and biased minihalos to the no minihalo case, as labeled,
for C = 1 (solid) and 10 (dashed).(See the electronic edition of the Journal for the color version of this figure.)
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FIG. 5.— Evolution of individual H II regions with the same source parameters as in Figure 4.Top: The correction factorβi/χeff due to minihalos for the number
of ionized photons consumed per atom that crosses the I-front, for biased (dashed) and unbiased minihalos (dotted) forC = 0,1 and 10.Bottom:Comoving radius of
the H II region for no minihalos (solid), unbiased (dotted) and biased minihalos (dashed) forC = 0,1 and 10. (See the electronic edition of the Journal for the color
version of this figure.)

FIG. 6.— Evolution of the dimensionless ionizing photon fluxF0(t) at the current position of the I-front. Same notation as in Fig. 4. Bottom set of (initially-
overlapping) curves are forC = 0, middle set - forC = 1 and top set - forC = 10, respectively.(See the electronic edition of the Journal for the color version of this
figure.)

FIG. 7.— Evolution of the IGM clumping factor inΛCDM from numerical N-body simulations, for the gasoutsidehalos.
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biased minihalos [as given by eq. (35)]. In Figure 4 we show
the evolution of the ionized volume. All volumes are normal-
ized toVmax = Nγ/n0

H , i.e. the volume ionized if there were no
minihalos and no recombinations in the gas.

The increase of the clumping factor fromC = 1 to C = 10
significantly decreases the maximum ionized volume achieved
by the H II regions, with and without minihalos, especially
at higher redshift, as shown for thez = 15 case in Figure 4.
For similar reasons, H II regions around source halos in over-
dense areas of the IGM must also be smaller than those in
the mean IGM. ForC = 0 and no minihalos,Vmax/V0 = fγ , so

rI,max/r0 = f 1/3
γ . Since more realistic cases, withC > 1 and

minihalos, all haveVI < Vmax, it must be true thatrI/r0 < f 1/3
γ ,

in general. According to Figure 2, the overdensityδclump > 1
outside the source halo for allr/r0 ∼< 20, whileδclump> 2 for all
r/ro ∼< 4 (6), for source halos of mass 1011 (108) M⊙. As such,
the IGM recombination correction to the ionized volume at any
epoch must be significantly enhanced by this local overdensity
for any fγ ∼< 1000. In short, for a realistic range offγ values,
cosmological H II regions from stellar sources are generally not
larger than the infall regions associated with their sourcehalos.
This is true with and without minihalos.

Next we consider the effect of adding minihalos. According
to Figure 4, for the 108M⊙ source halo, the unbiased minihalo
distribution decreases the ionized volume by∼ 20% compared
to the no minihalos case, while when we account for the mini-
halo bias about the source, the ionized volume is decreased by
a factor of 2 relative to the no minihalos case. For the 1011M⊙

source halo, the net ionized volume when minihalos are present
(biased or not) is about 65% of the volume in the case without
minihalos.

In the top panel of Figure 5, we plot the factorβi/χeff by
which minihalo evaporation boosts the number of ionizing pho-
tons consumed at the I-front per atom that crosses the front (in
the IGM and in minihalos combined). In the bottom panel of
this figure, we plot the comoving (Eulerian) radius of the cor-
responding H II regions. For the 108M⊙ source halo atzi = 15,
ignoring the minihalo bias (bottom lines) seriously underesti-
mates the photon consumption by a factor of∼> 2 as compared
to the biased minihalos (top lines). Furthermore, the overall ef-
fect of adding minihalos is to increase the photon consumption
by∼ 100%. For the 1011M⊙ halo atzi = 7, there is a similar in-
crease in the photon consumption, but little difference between
the biased and unbiased results.

Finally we plot the dimensionless fluxF0 at the current po-
sition of the I-front, in Figure 6. This is important as a check
of our assumptions, which incorporate simulation results for
minihalo evaporation for a range of fluxes, 10−2 ≤ F0 ≤ 103.
The value ofF0 has a significant impact on the ionizing photon
consumption of minihalos, which is higher for higher values
of F0. In both cases, the flux starts fairly high (F0 ∼> 100), but
drops toF0 ∼ 1 by the time the source starts to fade. At first this
drop is due mainly to geometric dilution, but later, recombina-
tions in the ionized volume accelerate this decrease according
to equation (29).

3. TOWARDS A MORE GLOBAL PICTURE

To construct models of the global reionization process, we
first calculate the number density of source halos at each red-
shift based on the PS formalism. We then calculate the evolu-
tion of the H II region created by each source halo, as discussed
in section §2.2 and §2.3. Finally, we add the volumes of all

these H II regions. This gives the total ionized mass fraction at
each redshift, according to

fI ,M =
∫ ∞

Ms,min

dM
∫ ∞

z
dz′

dns(M,z′)
dMdz′

VI (z,z′,M,Ṅγ ), (39)

where dns(M,z′)
dMdz′ is the PS distribution of the source halos, and

we assume here that source halos have massesMs ≥ Ms,min =
M(104K), the mass of halos withTvir = 104 K. The universe is
fully ionized when the H II regions overlap, which corresponds
to fI ,M = 1.

3.1. Time-Dependent Clumping Factor of IGM Outside Halos

As in the individual-source results above, we calculate the
evolution of the ionized mass fraction for the cases of no
minihalos, unbiased minihalos, and biased minihalos, and for
clumping factors ofC = 0,1 and 10. In addition, we consider
the more realistic case of a clumping factor that evolves in time
as more and more structure forms, which was obtained from
numerical N-body simulations by the particle-particle/particle
mesh (P3M) method, with a computational box size of 1 co-
moving Mpc with 1283 particles and 2563 cells, corresponding
to a particle mass of 2× 104M⊙ (see Shapiro 2001 and Iliev
et al. 2003 for details on the simulations). The result for the
IGM clumping factor is plotted in Figure 7. This clumping fac-
tor excludes the matter in collapsed halos, since as we discussed
above, these are self-shielded and we treat them separately. The
evolution of this IGM clumping factor with redshift is well-fit
by

C(z) = 17.6e−0.10z+0.0011z2

. (40)

3.2. The Global Consumption of Ionizing Photons During the
Epoch of Reionization

The reionization of the universe was complete when the vol-
ume of all the H II regions at some epoch equaled the total
volume. We call that the epoch of overlap, at redshiftzov. Gen-
eralizing Shapiro & Giroux (1987) we define a useful dimen-
sionless ratio of total number of ionizing photons emitted per
hydrogen atom in the universe until overlap atz= zov given by,

ζov =
fγΩb

n0
Hµmpts

∫ zov

∞

dz
∫ ∞

Ms,min

MsdMs

∫ t(zov)

t(z)
dt′

dn0
x(Ms,z′)

dMsdz′
dz′

dt′
,

(41)
where dn0

x(M,z)/dMdz is the comoving differential number
density of the source halos of massM formed at redshiftz.

3.3. Electron Scattering Optical Depth Through the Reionized
Universe

For any given reionization history, the mean optical depth
along a line-of-sight between an observer atz = 0 and a red-
shift z due to Thomson scattering by free electrons in the post-
recombination universe is given by

τes(z) = cσT

∫ 0

z
dz′ne(z

′)
dt
dz′

, (42)

whereσT = 6.65× 10−25cm2 is the Thomson scattering cross-
section,c is the speed of light, andne(z) is the mean number
density of free electrons at redshiftz, given by

ne(z) = ne,0(1+ z)3 fI ,M(z), (43)

wherefI ,M(z) is the ionized fraction of the IGM at redshiftz, and
ne,0 = n0

Hχeff. For comparison with the value ofτes between us
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and the surface of last scattering inferred from measurements
of the polarization of the CMB, we should evaluateτes(z) at
z= zrec, the redshift of recombination. For this paper we assume
that He is ionized to He II at the same time as H is ionized. We
make the reasonable approximation thatp = 2 (1) in χeff for
z≤ 3.5 (z> 3.5). In fact, the reionization of helium to He III
at z∼ 3− 4, inferred from observations of quasar absorption
spectra, has only a small effect on the total electron-scattering
optical depth and can be ignored for most purposes. In the case
of fI ,M = const between us and redshiftz (e.g. for an IGM fully
ionized and free of minihalos sincezov, fI ,M = 1 for z≤ zov), the
integral in equation (42) has a closed analytical form

τes(z) =
2cσTΩbρcrit,0

3H0µHmpΩ0
fI ,Mχeff

{

[Ω0(1+ z)3 + ΩΛ]1/2 − 1
}

, (44)

whereµH = 1+ 4A(He) = 1.32, the mean molecular weight per
H atom. For fI,M = 1(0) for z≤ zov (z > zov), τes ≥ 0.04 for
zov ≥ 6.

4. GLOBAL REIONIZATION MODELS: RESULTS AND
CONCLUSIONS

4.1. Fiducial Model

We first consider a fiducial model, Case A, that assumes that
the sources are Pop. II starbursts, withfγ = 250 and a lifetime of
ts = 3 Myr. The evolution of the ionized mass fractions for Case
A, with and without minihalos and IGM clumping, is shown in
Figure 8. Atz∼> 15 there are very few minihalos. Thus in the
C = 0 case, the no-minihalos model and the model with unbi-
ased minihalos are almost equivalent. The few minihalos that
do exist at such early times, however, are highly biased towards
the sources, giving rise to a substantial difference between the
biased and unbiased models. Similar trends are visible in the
C = 1 case with minihalos having an appreciable impact only
in the biased case. On the other hand, in theC(z) model, re-
combinations in non-virialized structures slow reionization to
the point where a significant average minihalo collapse frac-
tion builds up, giving rise to a shift (i.e. delay) of∆z∼ 2 be-
tween the no minihalos and unbiased minihalo models. In this
case, the minihalo correction increases with time relativeto the
case without minihalos, as expected since the unbiasedfcoll,MH
grows with time. This has the effect of slowing the rate of in-
crease of the ionized volume more and more over time. This
trend would help reconcile an early onset of reionization with a
late epoch of overlap. When minihalo bias is taken into account,
however, the minihalo correction is just as large at early times
as at late times. At late times the biased and unbiased minihalo
curves almost converge, since the clustering of small objects is
very weak at these times and bias has a minimal effect.

The results forzov, ζov and the netτes, τes(zrec), for our fidu-
cial model, Case A, are shown in Table 1 and in Figure 9 for
τes(z). When there are no minihalos and no recombinations in
the IGM, zov = 15.2 andτes = 0.186, which requires just one
photon per atom (i.e.ζov = 1). The presence of minihalos by
themselves delays overlap untilzov = 14, while increasing the
global photon consumption by a factor of∼ 2 and decreas-
ing the optical depth to 0.169. The IGM clumping by itself
delays overlap untilzov = 8.1(9.5) for C = 10[C(z)], increas-
ing the global photon consumption to 23(14) and decreasing
τes to 0.090(0.114). When the effects of both minihalos and
redshift-dependent IGM clumping are included, overlap is fur-
ther delayed untilzov = 7.2, in rough consistency with the re-
sults from the Gunn-Peterson trough observations, while the

electron-scattering optical depth decreases to 0.089, somewhat
below the 1− σ WMAP limit, and the global ionizing photon
consumption rises toζov = 33.

4.2. Impact of Model Uncertainties and Discussion

In order to estimate the effects of small-scale structure under
different assumptions, we consider several cases in addition to
our fiducial model (Case A). Case B is the same as our fidu-
cial model, but assumes that the sources are longer-lived, with
ts = 100 Myr. Case C is also the same as our fiducial model,
but assumes that the formation times of the minihalos are dis-
tributed in redshift, by replacing equation (32) with equation
(33) for unbiased minihalos and equation (35) with equation
(36) for biased minihalos as discussed in sections § 2.2.1 and
§ 2.2.2. Cases D, E and F are like Case A, except withfγ = 40
(Case D), 150 (Case E) and 500 (Case F). Finally, Case G as-
sumes Pop. III sources with ats = 3 Myr lifetime andfγ = 250.

The values ofzov, ζov andτes for each of these cases are sum-
marized in Table 1. In all cases the clumping of the IGM gas a
strong effect on the duration of reionization by significantly in-
creasing recombination rates and the ionized photon consump-
tion. Thus increasingC from 1 (no clumping) to 10 delays the
overlap by∆z≈ 4− 6 and increases the global ionizing photon
consumptionζov by a significant factor, between 6 and 17. The
electron-scattering optical depthτes decreases correspondingly,
from ∼ 0.11− 0.17 (consistent with current WMAP limits) for
C = 1, to∼ 0.04− 0.1 for C = 10. Interestingly, the cases with
evolving clumping factorC(z) yield epochs of overlap similar
to those of theC = 10 cases, while at the same time noticeably
increasingτes, by∆τes∼ 0.02 to∼ 0.09− 0.11, reaching better
agreement with the observational limits from WMAP.

The presence of minihalos additionally delays reionization,
by up to ∆z ≈ 2.5. This effect is strongest for short-lived
sources, and almost disappears for very long-lived sources
(Case B). This is because in the long-lived case, the same total
number of photons are produced over a longer time, and thus
the typical flux responsible for evaporating minihalos is lower,
leading to more efficient photoevaporation in terms of ioniz-
ing photon consumption. Similarly, in the short-lived case, the
photon consumption by minihalos typically raises the global
photon consumption per atom until overlap,ζov, by a factor of
∼ 2, while in Case B, theζov increases range from 10 to 60%,
depending on the clumping factor.

Turning to the question of our assumptions about minihalo
formation times, we find that the differences between cases A
and C are negligible in all cases. Thus we can generally assume
that the minihalos just formed at the redshift of consideration
as opposed to formation times that are distributed in redshift.

What is the effect of varying the efficiency for ionizing pho-
ton release? In Case D, in which reionization is caused by
Pop. II sources withfγ = 40, we find that overlap is achieved be-
forez= 6 only when there is no gas clumping (C = 1), even if no
minihalos are present. Hence,fγ (which depends upon the as-
sumed photon production per stellar baryon, star-formation effi-
ciency per halo baryon and the ionizing photon escape fraction)
should be significantly larger than this assumed value (e.g.by
replacing the Salpeter IMF by a top-heavy one). Forfγ = 150
(Case E), the values ofzov andτes without minihalos are essen-
tially equivalent to those in our fiducial Case A when biased
minihalos are included, for all values of the clumping factor.
The quantityζov is smaller in Case E than in Case A, however.

Since Case A has too small a value ofτes to satisfy the
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FIG. 8.— Global reionization. Sources withfγ = 250 and lifetime ofts = 3 Myr (Case A) are assumed. (bottom panel) Decimal logarithm of ionized mass (or
Lagrangian volume) fractions (i.e. 0 corresponds to overlap) for the cases of no minihalos (solid), unbiased minihalos(dotted), and biased minihalos (dashed) for
IGM clumping factors (top to bottom in each case)C = 0, 1, and C(z) (clumped IGM). (upper panel) Ratios of the ionized volume fractions in the presence ofbiased
minihalos and with no minihalos forC = 0, 1 and z-dependent.(See the electronic edition of the Journal for the color version of this figure.)

FIG. 9.— Global reionization. Integrated optical depth due to electron scatteringτes vs. redshift. Same notation as in Fig. 8. Top (dotted) curve shows the optical
depth produced assuming complete ionization out to the corresponding redshift. Horizontal lines indicate the best-fitand 1−σ uncertainties of the first-year WMAP
result,τes = 0.17±0.04. (See the electronic edition of the Journal for the color version of this figure.)
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TABLE 1

GLOBAL REIONIZATION RESULTS FOR IONIZING PHOTON CONSUMPTION, ζov OVERLAP EPOCH, zov
a , AND ELECTRON SCATTERING

OPTICAL DEPTH, τ .

No MH C = 0 C = 1 C = 10 C = C(z)
Case fγ ζov zov τes ζov zov τ ζov zov τes ζov zov τes
A 250 1 15.4 0.186 2.1 14.2 0.168 23 8.1 0.089 14 9.5 0.114
B 250,long life 1 13.6 0.157 1.8 13 0.144 13 9 0.096 9 9.8 0.108
C 250,z-distr. 1 15.4 0.186 2 14.2 0.168 24.5 8.1 0.090 15 9.4 0.114
D 40 1 11.3 0.137 2.7 9.3 0.107 ... ... 0.045 ... ... 0.048
E 150 1 14.4 0.173 2.3 12.7 0.151 24 6.5 0.072 21 7.0 0.088
F 500 1 17 0.205 2. 15.5 0.192 20 10.5 0.118 10.0 12 0.151
G 250 1 15.4 0.186 2.1 14.2 0.168 23 8.1 0.089 14 9.5 0.114
MH, no bias
A 250 1.2 15 0.183 2.5 13.6 0.164 39 6.7 0.077 30 7.5 0.099
B 250,long life 1.2 13.5 0.155 2 12.5 0.142 14 9 0.096 9 9.8 0.107
C 250,z-distr. 1.2 15 0.183 2.6 13.7 0.163 43 6.6 0.076 34 7 0.095
D 40 1.3 11 0.131 4.4 8 0.095 ... ... 0.043 ... ... 0.044
E 150 1.2 14 0.169 3 12 0.144 34 5.5 0.059 34 5.5 0.072
F 500 1.2 16.5 0.203 2.1 15.5 0.189 30 9.5 0.108 16.0 11 0.141
G 250 1.1 15.2 0.185 2.2 14 0.166 31 7.3 0.082 22 8.3 0.106
MH, w/bias
A 250 1.9 14 0.169 4.3 12.4 0.148 40 6.6 0.072 33 7.2 0.089
B 250,long life 1.6 13 0.148 2.3 12.3 0.138 14 9 0.095 10 9.7 0.106
C 250,z-distr. 2.1 14 0.169 4.5 12.4 0.148 44 6.6 0.072 35 7 0.087
D 40 2.0 10 0.117 5.1 7.5 0.085 ... ... 0.043 ... ... 0.044
E 150 2.0 13 0.154 4.6 11.0 0.129 34 5.5 0.057 34 5.5 0.067
F 500 1.8 15.3 0.192 3.4 14.5 0.176 37 9 0.100 22.0 10 0.126
G 250 1.5 14.7 0.177 3.2 13 0.157 32 7.2 0.079 24.5 8 0.099

aWhen no value ofzov is given, overlap was not achieved byz= 5.5.

WMAP constraint, we consider a case with higher efficiency
for photon releasefγ = 500 (Case F), to increaseτes by mak-
ing reionization earlier. With evolving clumping factorC(z)
and biased minihalos, Case F results inτes = 0.126, which
is marginally consistent with the 1-σ WMAP constraint, but
zov = 10, too early to match quasar observations.

Finally, we illustrate the difference between Pop. II and
Pop. III ionizing source spectra in Case G, for which massive
Pop. III stars providefγ = 250. The only difference between
Case G and Case A is the source spectral shape, which results in
somewhat more efficient evaporation of the minihalos. Hence,
overlap is slightly earlier, atzov = 8, andζov is a bit smaller, at
25, whileτes is a bit higher, atτes≃ 0.1, so there is still not a
good agreement with both the quasar and CMB constraints. If
we reducefγ somewhat, for this Pop. III case, the overlap red-
shift would drop, but so wouldτes, so it would not help to match
these observations simultaneously. We conclude from this that
this problem is not very sensitive to our choice of source spec-
trum.

It would appear then that our fiducial model Case A with
minihalos is the best candidate for helping to resolve QSO con-
straints onzov with the WMAP measurements ofτes. For al-
though the model still falls short of reproducing the observed
τes, minihalos nevertheless formon averagein small numbers
at early times and in large numbers at late times, thereby ex-
tending reionization and accumulating scattering opticaldepth
before overlap. However, this behavior changes dramatically
if one accounts for the strong clustering of high-z minihalos.
As shown in Figure 3, the minihalo collapsed fraction in the
neighborhood of the typical source halos is significantly higher
than the spatially-averaged collapsed fraction of minihalos at
the same epoch. Hence, although the total number of minihalos
increases with time, the numberaround sourcesremains largely

fixed, pushing the entire process of reionization to later times,
without significantly extending its duration.

This can be understood from our analytical solution for an
H II region in a uniform IGM for a steady source, discussed in
§ 2, if we assume thatβi is independent of time. In that case,
the H II region volumeV(t) in the presence of minihalos equals
the volume it would have had at some timet in the absence of
minihalos, at a later timet ′ = t(βi/χeff). This argument shows
that the rate of growth of the ionized volume,dVI/dt, decreases
in the presence of minihalos by the factorβi/χeff. This tilts
the curve of the rise of the mean ionized fraction of the IGM
with time to a flatter slope, which has the effect of extending
the reionization epoch and delaying overlap.

In order to reconcile the late epoch of overlap implied by ob-
servations of high-z QSO’s with the early start of reionization
implied by WMAP polarization results, we would like the rise
of the ionized volume to be more rapid at early times than at
late times. This is the effect whichunbiasedminihalos have,
according to the curves in Figure 8, because the average of the
factor βi/χeff increases with time in that case as the average
collapsed fraction of minihalos grows. However, when mini-
halo bias is taken into account, the effective average correction
factorβi/χeff remains roughly constant in time, thereby reduc-
ing dVI/dt by the same factor at all times, instead of a factor
which increases over time as required to reconcile the two ob-
servations. Thus although minihalos have a large effect onζov,
they do not help to reconcile the WMAP and high-redshift QSO
results. Instead they essentially act as local screens thatreduce
the effective number of photons that can impact the IGM at any
given redshift, given a choice offγ . A similar slow-down of
the growth of the ionized volume would result if we neglected
the minihalos but adopted a smaller efficiency for the release of
ionizing photons by the source halos, instead, as seen by com-
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paring Cases A and E.
The evolving clumping factor, on the other hand, does have

the desired effect of not only extending reionization, but also
producing significant ionized volume early on, when the IGM
clumping is low. This serves to bring the electron scattering op-
tical depth closer to the WMAP constraint, while also delaying
overlap.

We have demonstrated here that small-scale structure, which
has generally been neglected by previous treatments of reion-
ization, can have a substantial effect on the duration and epoch
of completion of reionization. In the future we can use the ap-
proach presented here to explore reionization under more com-
plex set of assumptions, allowing for the dependence of the
ionizing photon production efficiency and escape fraction on
time and halo mass and for the clustering of source halos, for
instance. Our current results suggest, for example, that aneffi-
ciency parameterfγ which decreases in time or with increasing
source halo mass, may cause the rise of ionized volume to de-
celerate over time, which would help to explain observations of

early reionization onset and late epoch of overlap.
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